Exemplos de estratégias quantitativas de negociação


S T R E E T E D E L A L S.


Tipos de estratégias de negociação Quantitative Hedge Fund.


Os Quant Hedge Funds vêm em todas as formas e tamanhos - desde pequenas empresas com empregados na adolescência, até fundos internacionais com presença em três continentes. Uma base de ativos maior não se correlaciona necessariamente com um número maior de funcionários; em vez disso, a equipe do Hedge Fund provavelmente é uma função do número de estratégias que emprega. Os Hedge Funds Quant podem se concentrar em ações, renda fixa ou outras classes de ativos, embora raramente um Quant Hedge Fund estivesse envolvido em uma estratégia de longo prazo de picking individual de ações sem proteção. Muitos CTAs ou “Consultores de Negociação de Commodities” também seriam considerados Quant Hedge Funds, dado seu papel na compra ou venda de contratos futuros, opções sobre futuros ou contratos de forex fora da bolsa de varejo (ou aconselhamento a outros para negociar nessas commodities).


A tabela a seguir fornece mais detalhes sobre os diferentes tipos de estratégias de investimento no Hedge Funds; É importante notar que versões quantitativas e não quantitativas de quase todos esses estilos de investimento do Hedge Fund podem ser construídas:


Negociação Relativa de Valor vs. Negociação Direcional.


A maioria das abordagens de investimento / investimento do Quantitative Hedge Fund se enquadra em uma de duas categorias: aquelas que usam estratégias de Relative Value e aquelas cujas estratégias seriam caracterizadas como Direcionais. Ambas as estratégias utilizam fortemente modelos de computador e software estatístico.


As estratégias de Relative Value tentam capitalizar sobre relacionamentos de preços previsíveis (geralmente relacionamentos de "reversão") entre vários ativos (por exemplo, a relação entre rendimentos de títulos do Tesouro dos EUA de curto prazo versus títulos de títulos do Tesouro dos EUA de longo prazo ou o relacionamento volatilidade em dois contratos de opções diferentes). Enquanto isso, as estratégias direcionais geralmente baseiam-se em tendências ou outros caminhos baseados em padrões sugestivos de impulso para cima ou para baixo para um título ou conjunto de valores mobiliários (por exemplo, apostar que os rendimentos de títulos do Tesouro dos EUA aumentam ou que implicavam volatilidade declínio).


Estratégias Relativas de Valor.


Exemplos comuns de estratégias de Relative Value incluem colocar apostas relativas (ou seja, comprar um ativo e vender outro) em ativos cujos preços estão intimamente ligados:


Títulos públicos de dois países diferentes Títulos do governo de dois tamanhos diferentes até o vencimento Títulos corporativos versus títulos hipotecários O diferencial de volatilidade implícita entre dois derivativos Índices acionários versus preços de títulos de um emissor de títulos corporativos ) se espalha.


A lista de potenciais estratégias de Valor Relativo é muito longa; acima são apenas alguns exemplos. Existem três estratégias de Valor Relativo muito importantes e comumente usadas para estar ciente, no entanto:


Arbitragem Estatística: negociação de uma tendência de reversão à média dos valores de cestas de ativos similares com base em relações comerciais históricas. Uma forma comum de Arbitragem Estatística, ou "Stat Arb," trading, é conhecida como negociação de Equity Market Neutral. Nesta estratégia, duas cestas de ações são escolhidas (uma cesta "longa" e uma cesta "curta"), com o objetivo de que os pesos relativos das duas cestas saiam do fundo com exposição líquida zero a vários fatores de risco (indústria, geografia, setor, etc. .) Stat Arb também pode envolver a negociação de um índice contra um ETF similar, ou um índice versus ações de uma única empresa. Arbitragem conversível: compra de emissões de obrigações convertíveis por uma empresa e, simultaneamente, venda das mesmas ações ordinárias da empresa, com a ideia de que, caso as ações de uma determinada empresa caiam, o lucro da posição vendida mais que compense qualquer perda no posição de obrigações convertíveis, dado o valor das obrigações convertíveis como instrumento de rendimento fixo. Da mesma forma, em qualquer movimento de subida das acções ordinárias, o fundo pode lucrar com a conversão das suas obrigações convertíveis em acções, vendendo essas acções no mercado. valor por uma quantia que exceda quaisquer perdas em sua posição vendida. Arbitragem de Renda Fixa: negociar títulos de renda fixa em mercados de títulos desenvolvidos para explorar anomalias percebidas de taxa de juros relativa. As posições de Arbitragem de Renda Fixa podem usar títulos do governo, swaps de taxa de juros e futuros de taxa de juros. Um exemplo popular desse estilo de negociação em arbitragem de renda fixa é o comércio de base, em que se vende (compra) títulos do Tesouro e compra ( vende) uma quantia correspondente da obrigação potencial de entrega. Aqui, está-se tendo uma visão sobre a diferença entre o preço à vista de uma obrigação e o preço do contrato ajustado futuro (preço futuro - fator de conversão) e negociando os pares de ativos em conformidade.


Estratégias direcionais.


As estratégias de negociação direcional, por sua vez, baseiam-se tipicamente em tendências ou outros caminhos baseados em padrões sugestivos de impulso para cima ou para baixo por um preço de segurança. O comércio direcional muitas vezes incorpora algum aspecto da Análise Técnica ou do gráfico. de preços através do estudo de dados de mercado anteriores de preço e volume. O “direcionamento” negociado pode ser aquele de um ativo em si (momentum nos preços das ações, por exemplo, ou a taxa de câmbio euro / dólar) ou um fator que afeta diretamente o mercado. próprio preço do ativo (por exemplo, volatilidade implícita para opções ou taxas de juros para títulos do governo).


A negociação técnica também pode incluir o uso de médias móveis, bandas em torno do desvio padrão histórico dos preços, níveis de suporte e resistência e taxas de variação. Tipicamente, os indicadores técnicos não constituiriam a base única para o investimento de um Fundo Quantitativo de Hedge. estratégia; Os Quante Hedge Funds empregam muitos fatores adicionais além das informações históricas sobre preço e volume. Em outras palavras, os Fundos Quantitativos de Hedge que empregam estratégias de negociação direcional geralmente têm estratégias quantitativas gerais que são muito mais sofisticadas do que a Análise Técnica geral.


Isto não é sugerir que os comerciantes do dia podem não ser capazes de lucrar com a Análise Técnica - ao contrário, muitas estratégias de negociação baseadas no momento podem ser lucrativas. Assim, para os propósitos deste módulo de treinamento, as referências às estratégias de negociação do Quant Hedge Fund não incluirão apenas as estratégias baseadas na Análise Técnica.


Outras estratégias quantitativas.


Outras abordagens quantitativas de negociação que não são facilmente categorizadas como estratégias de valor relativo ou estratégias direcionais incluem:


High-Frequency Trading, onde os investidores tentam tirar proveito das discrepâncias de preços entre múltiplas plataformas com muitos negócios ao longo do dia. As estratégias de volatilidade gerenciada usam futuros e contratos futuros para focar em gerar retornos absolutos baixos, mas estáveis, LIBOR-plus, aumentando ou diminuindo o número de contratos dinamicamente à medida que as volatilidades subjacentes das bolsas de valores, títulos e outros mercados mudam. As Estratégias de Volatilidade Gerenciada ganharam popularidade nos últimos anos devido à recente instabilidade dos mercados de ações e de títulos. O que é um fundo de hedge quantitativo? Top Quantitative Hedge Funds & rarr;


Guia para iniciantes em negociação quantitativa.


Guia para iniciantes em negociação quantitativa.


Neste artigo, vou apresentar alguns dos conceitos básicos que acompanham um sistema de negociação quantitativo de ponta a ponta. Espera-se que este post atenda a dois públicos-alvo. O primeiro será indivíduos tentando obter um emprego em um fundo como um comerciante quantitativo. A segunda será pessoas que desejam tentar montar seu próprio negócio de comércio algorítmico "de varejo".


A negociação quantitativa é uma área extremamente sofisticada de finanças quânticas. Pode levar uma quantidade significativa de tempo para obter o conhecimento necessário para passar uma entrevista ou construir suas próprias estratégias de negociação. Não só isso, mas requer extensa experiência em programação, pelo menos em uma linguagem como MATLAB, R ou Python. No entanto, à medida que a frequência de negociação da estratégia aumenta, os aspectos tecnológicos tornam-se muito mais relevantes. Assim, estar familiarizado com o C / C ++ será de suma importância.


Um sistema de negociação quantitativo consiste em quatro componentes principais:


Identificação Estratégica - Encontrando uma estratégia, explorando uma vantagem e decidindo sobre a frequência de negociação Backtesting da estratégia - Obtendo dados, analisando o desempenho da estratégia e removendo vieses Sistema de Execução - Vinculando a uma corretora, automatizando a negociação e minimizando custos de transação tamanho da aposta "/ critério de Kelly e psicologia de negociação.


Começaremos dando uma olhada em como identificar uma estratégia de negociação.


Identificação de estratégia.


Todos os processos de negociação quantitativos começam com um período inicial de pesquisa. Este processo de pesquisa engloba encontrar uma estratégia, verificando se a estratégia se encaixa em um portfólio de outras estratégias que você pode estar executando, obtendo quaisquer dados necessários para testar a estratégia e tentando otimizar a estratégia para retornos mais altos e / ou menor risco. Você precisará levar em conta suas próprias necessidades de capital se administrar a estratégia como um operador de "varejo" e como os custos de transação afetarão a estratégia.


Ao contrário da crença popular, é bastante simples encontrar estratégias lucrativas por meio de várias fontes públicas. Os acadêmicos publicam regularmente resultados teóricos de negociação (embora, em sua maioria, sejam brutos dos custos de transação). Os blogs de finanças quantitativas discutirão as estratégias em detalhes. Os jornais de comércio delinearão algumas das estratégias empregadas pelos fundos.


Você pode questionar por que os indivíduos e as empresas estão interessados ​​em discutir suas estratégias lucrativas, especialmente quando sabem que outras pessoas "que estão ocupando o mercado" podem impedir que a estratégia funcione a longo prazo. A razão está no fato de que eles não costumam discutir os parâmetros exatos e os métodos de ajuste que eles realizaram. Essas otimizações são a chave para transformar uma estratégia relativamente medíocre em uma altamente lucrativa. Na verdade, uma das melhores maneiras de criar suas próprias estratégias únicas é encontrar métodos semelhantes e, em seguida, realizar seu próprio procedimento de otimização.


Aqui está uma pequena lista de lugares para começar a procurar ideias estratégicas:


Muitas das estratégias que você irá analisar se encaixarão nas categorias de reversão à média e tendência / momento. Uma estratégia de reversão à média é aquela que tenta explorar o fato de que existe uma média de longo prazo em uma "série de preços" (como o spread entre dois ativos correlatos) e que desvios de curto prazo dessa média acabarão sendo revertidos. Uma estratégia de momentum tenta explorar tanto a psicologia do investidor quanto a grande estrutura de fundos, "pegando carona" em uma tendência de mercado, que pode ganhar impulso em uma direção e seguir a tendência até que ela se reverta.


Outro aspecto extremamente importante da negociação quantitativa é a frequência da estratégia de negociação. A negociação de baixa frequência (LFT) geralmente se refere a qualquer estratégia que detenha ativos por mais de um dia de negociação. Correspondentemente, a negociação de alta frequência (HFT) geralmente se refere a uma estratégia que mantém ativos intraday. Negociação de frequência ultra-alta (UHFT) refere-se a estratégias que mantêm ativos na ordem de segundos e milissegundos. Como profissionais de varejo, HFT e UHFT certamente são possíveis, mas apenas com conhecimento detalhado da "pilha de tecnologia" e da dinâmica do livro de pedidos. Não vamos discutir esses aspectos em grande medida neste artigo introdutório.


Uma vez que uma estratégia, ou conjunto de estratégias, tenha sido identificada, ela agora precisa ser testada quanto à lucratividade nos dados históricos. Esse é o domínio do backtesting.


Backtesting de estratégia.


O objetivo do backtesting é fornecer evidências de que a estratégia identificada por meio do processo acima é lucrativa quando aplicada a dados históricos e fora da amostra. Isso define a expectativa de como a estratégia funcionará no "mundo real". No entanto, backtesting não é garantia de sucesso, por várias razões. É talvez a área mais sutil do comércio quantitativo, uma vez que implica inúmeros vieses, que devem ser cuidadosamente considerados e eliminados, tanto quanto possível. Discutiremos os tipos comuns de polarização, incluindo viés de antecipação, viés de sobrevivência e viés de otimização (também conhecido como viés de "espionagem de dados"). Outras áreas de importância dentro do backtesting incluem a disponibilidade e a limpeza de dados históricos, levando em consideração custos de transação realistas e decidindo sobre uma plataforma robusta de backtesting. Discutiremos os custos de transação na seção Sistemas de Execução abaixo.


Uma vez que uma estratégia tenha sido identificada, é necessário obter os dados históricos através dos quais realizar testes e, talvez, refinamento. Há um número significativo de fornecedores de dados em todas as classes de ativos. Seus custos geralmente variam de acordo com a qualidade, profundidade e pontualidade dos dados. O ponto de partida tradicional para os comerciantes de quantia iniciais (pelo menos no nível de varejo) é usar o conjunto de dados gratuito do Yahoo Finance. Não vou me debruçar muito sobre fornecedores aqui, em vez disso, gostaria de me concentrar nas questões gerais ao lidar com conjuntos de dados históricos.


As principais preocupações com dados históricos incluem exatidão / limpeza, viés de sobrevivência e ajuste para ações corporativas, como dividendos e desdobramentos:


Precisão pertence à qualidade geral dos dados - se contém algum erro. Às vezes, os erros podem ser fáceis de identificar, como com um filtro de pico, que detecta "picos" incorretos nos dados de séries temporais e os corrige. Em outras ocasiões, podem ser muito difíceis de detectar. Muitas vezes é necessário ter dois ou mais provedores e, em seguida, verificar todos os seus dados uns contra os outros. O viés de sobrevivência é muitas vezes uma "característica" de conjuntos de dados gratuitos ou baratos. Um conjunto de dados com viés de sobrevivência significa que ele não contém ativos que não estão mais sendo negociados. No caso de ações, isso significa ações excluídas / falidas. Esse viés significa que qualquer estratégia de negociação de ações testada em tal conjunto de dados provavelmente terá um desempenho melhor do que no "mundo real", já que os "vencedores" históricos já foram pré-selecionados. As ações corporativas incluem atividades "logísticas" realizadas pela empresa, que geralmente causam uma mudança na função de etapa do preço bruto, que não deve ser incluída no cálculo dos retornos do preço. Ajustes para dividendos e desdobramentos são os culpados comuns. Um processo conhecido como ajuste de costas é necessário para ser realizado em cada uma dessas ações. É preciso ter muito cuidado para não confundir uma divisão de ações com um verdadeiro ajuste de retorno. Muitos traders foram pegos por uma ação corporativa!


Para realizar um procedimento de backtest, é necessário usar uma plataforma de software. Você tem a escolha entre softwares backtest dedicados, como o Tradestation, uma plataforma numérica como o Excel ou o MATLAB ou uma implementação personalizada completa em uma linguagem de programação como Python ou C ++. Eu não vou me demorar muito em Tradestation (ou similar), Excel ou MATLAB, como eu acredito em criar uma pilha de tecnologia interna completa (por razões descritas abaixo). Um dos benefícios disso é que o software de backtest e o sistema de execução podem ser totalmente integrados, mesmo com estratégias estatísticas extremamente avançadas. Para as estratégias de HFT, em particular, é essencial usar uma implementação personalizada.


Ao fazer o backtest de um sistema, é preciso ser capaz de quantificar o desempenho do mesmo. As métricas "padrão da indústria" para estratégias quantitativas são o rebaixamento máximo e o Índice de Sharpe. O rebaixamento máximo caracteriza a maior queda de ponta a ponta na curva de patrimônio da conta em um determinado período de tempo (geralmente anual). Isso é mais frequentemente citado como uma porcentagem. As estratégias de LFT tenderão a ter rebaixamentos maiores do que as estratégias de HFT, devido a vários fatores estatísticos. Um backtest histórico mostrará o último drawdown máximo, que é um bom guia para o futuro desempenho de drawdown da estratégia. A segunda medida é o Índice de Sharpe, que é definido heuristicamente como a média dos retornos excedentes dividida pelo desvio padrão desses retornos excedentes. Aqui, os retornos excedentes referem-se ao retorno da estratégia acima de um benchmark pré-determinado, como o S & P500 ou um Tesouro de 3 meses. Note-se que o retorno anualizado não é uma medida normalmente utilizada, pois não leva em conta a volatilidade da estratégia (ao contrário do Índice de Sharpe).


Uma vez que uma estratégia tenha sido testada novamente e seja considerada livre de vieses (na medida em que isso seja possível!), Com um bom Sharpe e rebaixamentos minimizados, é hora de construir um sistema de execução.


Sistemas de Execução.


Um sistema de execução é o meio pelo qual a lista de negociações geradas pela estratégia é enviada e executada pelo intermediário. Apesar do fato de que a geração de comércio pode ser semi ou totalmente automatizada, o mecanismo de execução pode ser manual, semi-manual (ou seja, "um clique") ou totalmente automatizado. Para estratégias de LFT, técnicas manuais e semi-manuais são comuns. Para as estratégias de HFT, é necessário criar um mecanismo de execução totalmente automatizado, que muitas vezes será fortemente acoplado ao gerador de comércio (devido à interdependência entre estratégia e tecnologia).


As principais considerações ao criar um sistema de execução são a interface com a corretora, a minimização dos custos de transação (incluindo comissão, derrapagem e spread) e a divergência de desempenho do sistema ao vivo do desempenho do backtested.


Há muitas maneiras de interagir com uma corretora. Eles variam de chamar seu corretor por telefone até uma Application Programming Interface (API) de alto desempenho totalmente automatizada. O ideal é que você queira automatizar a execução de seus negócios o máximo possível. Isso libera você para se concentrar em mais pesquisas, bem como permitir que você execute várias estratégias ou mesmo estratégias de maior frequência (na verdade, HFT é essencialmente impossível sem execução automatizada). O software comum de backtesting descrito acima, como MATLAB, Excel e Tradestation, é bom para estratégias mais simples e de menor frequência. No entanto, será necessário construir um sistema de execução interno escrito em uma linguagem de alto desempenho, como C ++, para fazer qualquer HFT real. Como uma anedota, no fundo em que eu costumava trabalhar, tínhamos um "ciclo de negociação" de 10 minutos, onde baixávamos novos dados de mercado a cada 10 minutos e depois executávamos negociações com base nessas informações no mesmo período de tempo. Isso estava usando um script Python otimizado. Para qualquer coisa que se aproxime de dados de frequência de minutos ou segundos, acredito que C / C ++ seria mais ideal.


Em um fundo maior, muitas vezes não é o domínio do comerciante de quantificação para otimizar a execução. No entanto, em pequenas lojas ou empresas de HFT, os comerciantes são os executores e, portanto, um conjunto de habilidades muito mais amplo é geralmente desejável. Tenha isso em mente se você deseja ser empregado por um fundo. Suas habilidades de programação serão tão importantes, se não mais, do que suas estatísticas e talentos econométricos!


Outra questão importante que cai sob a bandeira da execução é a minimização dos custos de transação. Geralmente, há três componentes nos custos de transação: Comissões (ou impostos), que são as taxas cobradas pela corretora, pela bolsa e pela SEC (ou órgão regulador governamental similar); escorregamento, que é a diferença entre o que você pretendia que seu pedido fosse preenchido versus o que foi realmente preenchido; spread, que é a diferença entre o preço de compra / venda do título negociado. Observe que o spread NÃO é constante e depende da liquidez atual (ou seja, disponibilidade de ordens de compra / venda) no mercado.


Os custos de transação podem fazer a diferença entre uma estratégia extremamente lucrativa com um bom índice de Sharpe e uma estratégia extremamente não lucrativa com um índice de Sharpe terrível. Pode ser um desafio prever corretamente os custos de transação de um backtest. Dependendo da frequência da estratégia, você precisará acessar os dados históricos do câmbio, que incluirão dados de ticks para preços de compra / venda. Equipes inteiras de quantos são dedicadas à otimização da execução nos fundos maiores, por esses motivos. Considere o cenário em que um fundo precisa descarregar uma quantidade substancial de negociações (das quais as razões para isso são muitas e variadas!). Ao "despejar" tantas ações no mercado, elas rapidamente deprimirão o preço e podem não obter uma execução ideal. Daí algoritmos que "gotejam feed" ordens para o mercado existem, embora o fundo corre o risco de derrapagem. Além disso, outras estratégias "atacam" essas necessidades e podem explorar as ineficiências. Este é o domínio da arbitragem da estrutura do fundo.


A última grande questão para os sistemas de execução diz respeito à divergência de desempenho da estratégia do desempenho do backtested. Isso pode acontecer por vários motivos. Já analisamos o viés de look-ahead e o viés de otimização em profundidade, ao considerar os backtests. No entanto, algumas estratégias não facilitam o teste desses vieses antes da implantação. Isso ocorre em HFT mais predominantemente. Pode haver bugs no sistema de execução, bem como a própria estratégia de negociação que não aparece em um backtest, mas aparece no live trading. O mercado pode ter sido sujeito a uma mudança de regime após a implantação de sua estratégia. Novos ambientes regulatórios, mudanças no sentimento do investidor e fenômenos macroeconômicos podem levar a divergências na forma como o mercado se comporta e, consequentemente, na rentabilidade de sua estratégia.


Gerenciamento de riscos.


A peça final do quebra-cabeça de negociação quantitativa é o processo de gerenciamento de risco. "Risco" inclui todos os vieses anteriores que discutimos. Isso inclui risco de tecnologia, como servidores co-localizados na central de repente desenvolvendo um mau funcionamento do disco rígido. Isso inclui risco de corretagem, como o corretor estar falido (não tão louco quanto parece, dado o recente susto com a MF Global!). Em suma, abrange quase tudo o que poderia interferir com a implementação comercial, dos quais existem muitas fontes. Livros inteiros são dedicados à gestão de risco para estratégias quantitativas, então eu não tentarei elucidar todas as possíveis fontes de risco aqui.


A gestão de risco também abrange o que é conhecido como alocação de capital ideal, que é um ramo da teoria de portfólio. Esse é o meio pelo qual o capital é alocado a um conjunto de estratégias diferentes e aos negócios dentro dessas estratégias. É uma área complexa e depende de algumas matemáticas não triviais. O padrão da indústria pelo qual a alocação ótima de capital e a alavancagem das estratégias estão relacionadas é chamado de critério de Kelly. Como este é um artigo introdutório, não vou me alongar em seu cálculo. O critério de Kelly faz algumas suposições sobre a natureza estatística dos retornos, que muitas vezes não são verdadeiros nos mercados financeiros, de modo que os operadores geralmente são conservadores quando se trata da implementação.


Outro componente fundamental do gerenciamento de riscos é lidar com o próprio perfil psicológico. Existem muitos vieses cognitivos que podem surgir na negociação. Embora isso seja reconhecidamente menos problemático com negociação algorítmica se a estratégia for deixada em paz! Um viés comum é o da aversão à perda, em que uma posição perdedora não será fechada devido à dor de ter que perceber uma perda. Da mesma forma, os lucros podem ser tomados muito cedo porque o medo de perder um lucro já ganho pode ser muito grande. Outro viés comum é conhecido como viés de recência. Isso se manifesta quando os operadores enfatizam demais os eventos recentes e não a longo prazo. Então, é claro, há o par clássico de preconceitos emocionais - medo e ganância. Estes podem muitas vezes levar a sub ou sobre-alavancagem, o que pode causar blow-up (ou seja, o título da conta indo para zero ou pior!) Ou lucros reduzidos.


Como pode ser visto, o comércio quantitativo é uma área extremamente complexa, embora muito interessante, de financiamento quantitativo. Eu literalmente arranhei a superfície do tópico neste artigo e já está ficando bastante longo! Livros e documentos inteiros foram escritos sobre questões para as quais eu só dei uma ou duas sentenças. Por esse motivo, antes de se candidatar a cargos quantitativos de negociação de fundos, é necessário realizar uma quantidade significativa de estudo de base. No mínimo, você precisará de um extenso conhecimento em estatística e econometria, com muita experiência em implementação, por meio de uma linguagem de programação como MATLAB, Python ou R. Para estratégias mais sofisticadas no final de frequência mais alta, seu conjunto de habilidades é provável para incluir a modificação do kernel do Linux, C / C ++, programação de montagem e otimização de latência de rede.


Se você estiver interessado em tentar criar suas próprias estratégias de negociação algorítmica, minha primeira sugestão seria se programar bem. Minha preferência é construir o máximo possível de dados capturados, backtester de estratégia e sistema de execução. Se o seu próprio capital está em jogo, não dormiria melhor à noite sabendo que você testou completamente o seu sistema e está ciente de suas armadilhas e problemas específicos? Terceirizar isso para um fornecedor, enquanto potencialmente economiza tempo a curto prazo, pode ser extremamente caro a longo prazo.


A Quantcademy.


Participe do portal de associação da Quantcademy que atende à crescente comunidade de traders de quantificação de varejo e aprenda como aumentar a lucratividade de sua estratégia.


Negociação Algorítmica Bem Sucedida.


Como encontrar novas ideias de estratégia de negociação e avaliá-las objetivamente para o seu portfólio usando um mecanismo de backtesting personalizado no Python.


Comércio Algorítmico Avançado.


Como implementar estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas Bayesianas com R e Python.


Noções básicas de negociação algorítmica: conceitos e exemplos.


Um algoritmo é um conjunto específico de instruções claramente definidas destinadas a realizar uma tarefa ou processo.


O comércio algorítmico (negociação automatizada, negociação de caixa preta ou simplesmente negociação de algoritmos) é o processo de usar computadores programados para seguir um conjunto definido de instruções para fazer uma negociação, a fim de gerar lucros a uma velocidade e frequência impossíveis para uma negociação. comerciante humano. Os conjuntos de regras definidos são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Para além das oportunidades de lucro para o comerciante, a negociação de algoritmos torna os mercados mais líquidos e torna o comércio mais sistemático ao excluir os impactos humanos emocionais nas atividades de negociação. (Para mais, confira Escolhendo o Software de Negociação Algorítmica Certo.)


Suponha que um comerciante siga estes critérios comerciais simples:


Compre 50 ações de uma ação quando a média móvel de 50 dias ultrapassar a média móvel de 200 dias. Venda ações da ação quando a média móvel de 50 dias ficar abaixo da média móvel de 200 dias.


Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitore automaticamente o preço das ações (e os indicadores de média móvel) e coloque as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais ficar de olho nos preços e gráficos ao vivo, ou colocar os pedidos manualmente. O sistema de negociação algorítmica faz isso automaticamente, identificando corretamente a oportunidade de negociação. (Para obter mais informações sobre médias móveis, consulte Médias móveis simples Faça as tendências se destacarem.)


[Se você quiser aprender mais sobre as estratégias comprovadas e no ponto que podem, eventualmente, ser trabalhadas em um sistema de negociação alorítimo, confira o curso Torne-se um Day Trader da Investopedia Academy. ]


Benefícios do comércio algorítmico.


Algo-trading fornece os seguintes benefícios:


Negociações executadas com os melhores preços Possibilidade de colocação imediata e imediata de ordens (com altas chances de execução nos níveis desejados) Negociações cronometradas correta e instantaneamente, para evitar mudanças significativas nos preços Redução dos custos de transação (veja o exemplo de déficit de implementação abaixo) Verificações automatizadas simultâneas em múltiplos condições de mercado Risco reduzido de erros manuais na colocação dos negócios Backtest o algoritmo, com base em dados históricos e em tempo real disponíveis Possibilidade de erros reduzidos por comerciantes humanos com base em fatores emocionais e psicológicos.


A maior parte da negociação de algoritmos atuais é a negociação de alta frequência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em vários mercados e vários parâmetros de decisão, com base em instruções pré-programadas. (Para mais informações sobre negociação de alta frequência, consulte Estratégias e segredos de empresas de negociação de alta frequência (HFT).)


O comércio de algo é usado em muitas formas de atividades de negociação e investimento, incluindo:


Investidores de médio a longo prazo ou empresas compradoras (fundos de pensão, fundos mútuos, seguradoras) que compram em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e de grande volume. Comerciantes de curto prazo e participantes do lado da venda (formadores de mercado, especuladores e arbitradores) se beneficiam da execução automatizada do comércio; Além disso, o comércio de algo ajuda a criar liquidez suficiente para os vendedores no mercado. Comerciantes sistemáticos (seguidores de tendências, pares de traders, hedge funds, etc.) acham muito mais eficiente programar suas regras de negociação e permitir que o programa troque automaticamente.


O comércio algorítmico fornece uma abordagem mais sistemática ao comércio ativo do que métodos baseados na intuição ou instinto de um comerciante humano.


Estratégias de Negociação Algorítmica.


Qualquer estratégia para negociação algorítmica requer uma oportunidade identificada que seja lucrativa em termos de ganhos aprimorados ou redução de custos. A seguir estão as estratégias de negociação comuns usadas no comércio de algo:


As estratégias de negociação algorítmica mais comuns seguem as tendências de médias móveis, desvios de canal, movimentos de níveis de preços e indicadores técnicos relacionados. Essas são as estratégias mais fáceis e simples de implementar por meio do comércio algorítmico, porque essas estratégias não envolvem previsões nem previsões de preços. As negociações são iniciadas com base na ocorrência de tendências desejáveis, que são fáceis e diretas de implementar por meio de algoritmos, sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre estratégias de negociação de tendências, consulte: Estratégias simples para capitalizar tendências.)


Comprar uma ação com cotação dupla a um preço menor em um mercado e, simultaneamente, vendê-la a um preço mais alto em outro mercado oferece o diferencial de preço como lucro ou arbitragem isenta de risco. A mesma operação pode ser replicada para ações versus instrumentos futuros, já que os diferenciais de preço existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de maneira eficiente.


Os fundos de índices definiram períodos de reequilíbrio para aproximar seus investimentos aos seus respectivos índices de referência. Isso cria oportunidades lucrativas para os traders algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos básicos, dependendo do número de ações no fundo de índice, imediatamente antes do rebalanceamento do fundo do índice. Tais negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços.


Muitos modelos matemáticos comprovados, como a estratégia de negociação delta-neutral, que permitem negociar com combinação de opções e seu título subjacente, onde são feitas negociações para compensar deltas positivos e negativos, de modo que o delta do portfólio seja mantido em zero.


A estratégia de reversão à média baseia-se na ideia de que os preços altos e baixos de um ativo são um fenômeno temporário que revertem para seu valor médio periodicamente. Identificar e definir uma faixa de preço e implementar um algoritmo com base nisso permite que os negócios sejam colocados automaticamente quando o preço do ativo entra e sai de seu intervalo definido.


A estratégia de preço médio ponderado por volume divide uma ordem grande e libera pedaços menores da ordem para o mercado, determinados dinamicamente, usando perfis de volume histórico específicos do estoque. O objetivo é executar o pedido próximo ao Preço Médio Ponderado pelo Volume (VWAP), beneficiando, assim, no preço médio.


A estratégia de preço médio ponderada pelo tempo quebra uma ordem grande e libera dinamicamente pedaços menores da ordem para o mercado usando intervalos de tempo divididos uniformemente entre uma hora inicial e final. O objetivo é executar o pedido próximo ao preço médio entre os horários inicial e final, minimizando o impacto no mercado.


Até que a ordem de negociação esteja totalmente preenchida, este algoritmo continua enviando ordens parciais, de acordo com a taxa de participação definida e de acordo com o volume negociado nos mercados. A "estratégia de etapas" relacionada envia pedidos em uma porcentagem definida pelo usuário de volumes de mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge níveis definidos pelo usuário.


A estratégia de déficit de implementação visa minimizar o custo de execução de um pedido negociando o mercado em tempo real, economizando assim no custo do pedido e se beneficiando do custo de oportunidade de execução atrasada. A estratégia aumentará a taxa de participação visada quando o preço das ações se mover favoravelmente e diminuirá quando o preço das ações se mover negativamente.


Existem algumas classes especiais de algoritmos que tentam identificar “acontecimentos” do outro lado. Esses "algoritmos de farejamento", usados, por exemplo, por um criador de mercado do lado da venda, têm a inteligência incorporada para identificar a existência de quaisquer algoritmos no lado da compra de uma ordem grande. Essa detecção por meio de algoritmos ajudará o criador de mercado a identificar grandes oportunidades de pedidos e possibilitará que ele se beneficie com o preenchimento dos pedidos a um preço mais alto. Às vezes, isso é identificado como front-running de alta tecnologia. (Para mais informações sobre comércio de alta frequência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.)


Requisitos técnicos para negociação algorítmica.


Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. Os seguintes são necessários:


Conhecimentos de programação de computadores para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricados. Conectividade de rede e acesso a plataformas de negociação para colocação de pedidos. Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de fazer pedidos. para backtest o sistema, uma vez construído, antes de ir viver em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo.


Aqui está um exemplo abrangente: A Royal Dutch Shell (RDS) está listada na Bolsa de Valores de Amsterdã (AEX) e na Bolsa de Valores de Londres (LSE). Vamos criar um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes:


AEX negocia em Euros, enquanto a LSE negocia em Libras Esterlinas Devido à diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguida pelas duas bolsas negociadas simultaneamente pelas próximas horas e depois negociando apenas na LSE durante a última hora conforme a AEX fecha .


Podemos explorar a possibilidade de negociação de arbitragem sobre as ações da Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes?


Um programa de computador que pode ler os preços de mercado atuais Feeds de preços de LSE e AEX Um feed de taxa de câmbio para taxa de câmbio de GBP-EUR Capacidade de colocação de pedidos que pode encaminhar o pedido para a capacidade correta de troca.


O programa de computador deve executar o seguinte:


Leia o feed de preço recebido do estoque RDS de ambas as trocas Usando as taxas de câmbio disponíveis, converta o preço de uma moeda para outra Se houver uma discrepância de preço suficiente (descontando os custos de corretagem) levando a uma oportunidade lucrativa, coloque a compra ordem em troca de preço mais baixo e ordem de venda em troca de preço mais alto Se as ordens forem executadas como desejado, o lucro da arbitragem seguirá.


Simples e fácil! No entanto, a prática de negociação algorítmica não é tão simples de manter e executar. Lembre-se, se você puder colocar uma negociação gerada por algoritmos, os outros participantes do mercado também poderão. Consequentemente, os preços flutuam em milissegundos e até microssegundos. No exemplo acima, o que acontece se a transação de compra for executada, mas o comércio de venda não é feito, pois os preços de venda mudam no momento em que seu pedido chega ao mercado? Você vai acabar sentado com uma posição aberta, fazendo com que sua estratégia de arbitragem seja inútil.


Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos entre ordens de negociação e execução e, o mais importante de tudo, algoritmos imperfeitos. Quanto mais complexo for um algoritmo, o backtesting mais rigoroso é necessário antes de ser colocado em ação.


The Bottom Line.


A análise quantitativa do desempenho de um algoritmo desempenha um papel importante e deve ser examinada criticamente. É emocionante usar a automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso garantir que o sistema seja completamente testado e que os limites necessários sejam definidos. Comerciantes analíticos devem considerar aprender programação e construir sistemas por conta própria, para ter confiança em implementar as estratégias corretas de maneira infalível. Uso cauteloso e testes completos de negociação de algoritmos podem criar oportunidades lucrativas. (Para mais, veja Como codificar seu próprio robô de negociação da Algo.)


Tipos Comuns de Algoritmos de Negociação.


Esta é uma breve visão geral dos tipos comuns de algoritmos de finanças quantitativas que são negociados hoje. Claro, isso é apenas uma visão geral e não abrangente! Deixe-me saber se você acha que há outros tipos de algoritmos que devo abordar.


Investidores de reversão média assumem que o preço da ação irá, com o tempo, voltar ao seu preço médio de longo prazo. Eles usam a análise do preço das ações para determinar os limites de negociação de significância estatística. Se a ação estiver sendo negociada significativamente acima da média móvel, ela será vendida em baixa. Por outro lado, se a ação estiver tendendo significativamente abaixo de sua média móvel, ela será comprada. Veja a estratégia de exemplo Valuation - Bargain Shopping.


Os investidores criam estratégias que dependem da época do ano. Está bem documentado que os mercados tendem a ter retornos melhores no final do ano e durante os meses de verão, enquanto setembro é geralmente um mês com retornos mais baixos. Para evitar a perda de capital, alguns investidores optam por vender suas posições com perdas no final de dezembro para se beneficiar da clemência tributária. Em janeiro, os investidores retornam em triunfo e compram ações de pequena capitalização e valor, elevando seus preços. Os preços das ações também apresentam uma tendência diferente em torno dos feriados e períodos de fechamento dos trimestres. Uma estratégia simples é comprar e manter ações (SPY) de outubro a abril e depois girar para comprar e manter títulos (BSV) de maio a setembro. Veja o exemplo da estratégia Sentimento - Compre o rumor, venda as notícias.


A negociação da Análise de Sentimentos deriva da psicologia de massa, na qual os investidores mantêm-se atualizados sobre notícias recentes e compram ações para prever a reação da multidão. Eles tentam capturar mudanças de preço a curto prazo e colher os benefícios rápidos. Os investidores podem monitorar fontes, incluindo tendências de pesquisa do Google, meios de comunicação, blogs / fóruns e postagens no Twitter. Veja a estratégia de exemplo Fundamental Investing.


Esta é uma maneira de avaliar o verdadeiro valor intrínseco de uma ação examinando fatores de nível macro, como indicadores econômicos, comparações setoriais e setoriais, e analisando as demonstrações financeiras da empresa. Os cálculos derivados de dados reais tentam modelar o valor real da ação, que é então comparado ao preço de mercado da ação - conduzindo a decisão de comprar ou vender. Exemplos de pontos de dados para análise fundamental incluem receitas de empresas, lucros, crescimento futuro, retorno sobre o patrimônio líquido e margens de lucro. Investimento Técnico.


Esse método examina a atividade do mercado anterior quanto a mudanças no preço e volume da ação, acreditando que o desempenho histórico é indicativo de resultados futuros. Os investidores usam gráficos, estatísticas e outras ferramentas para descobrir padrões nos dados para prever movimentos futuros de preços. Esse estilo de investimento não analisa o valor intrínseco do estoque, mas sim o movimento futuro da segurança. Para adicionar uma análise técnica ao seu código Quantopian, consulte a biblioteca de código aberto ta-lib.


O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.


Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis ​​por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.


Comentários estão fechados.


O material deste site é fornecido apenas para fins informativos e não constitui uma oferta de venda, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer serviços de consultoria de investimento pela Quantopian.


Além disso, o material não oferece opinião com relação à adequação de qualquer investimento específico ou de segurança. Nenhuma informação aqui contida deve ser considerada como uma sugestão para se envolver ou se abster de qualquer ação relacionada ao investimento, já que nenhuma das empresas da Quantopian ou de suas afiliadas está prestando consultoria de investimento, atuando como consultora de qualquer plano ou entidade sujeita a o Employee Retirement Income Security Act de 1974, conforme alterado, conta de aposentadoria individual ou anuidade de aposentadoria individual, ou dar conselhos em uma capacidade fiduciária com relação aos materiais aqui apresentados. Se você for um investidor individual ou outro investidor, entre em contato com seu consultor financeiro ou outro fiduciário não relacionado com a Quantopian sobre se qualquer ideia, estratégia, produto ou serviço de investimento descrito aqui pode ser apropriado para suas circunstâncias. Todos os investimentos envolvem risco, incluindo perda de principal. A Quantopian não garante a exatidão ou integridade das opiniões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis ​​por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas.


O material deste site é fornecido apenas para fins informativos e não constitui uma oferta para vender, uma solicitação de compra ou uma recomendação ou endosso para qualquer segurança ou estratégia, nem constitui uma oferta para fornecer consultoria de investimento ou outros serviços por Quantopian. Além disso, o conteúdo do site não oferece nenhuma opinião com relação à adequação de qualquer segurança ou investimento específico.


A Quantopian não oferece garantias quanto à exatidão ou integridade das visões expressas no site. As opiniões estão sujeitas a alterações e podem ter se tornado não confiáveis ​​por várias razões, incluindo mudanças nas condições de mercado ou circunstâncias econômicas. Todos os investimentos envolvem risco - incluindo perda de principal. Você deve consultar um profissional de investimento antes de tomar qualquer decisão de investimento.


Abordagem Quant para Construir Estratégias de Negociação: Parte Um.


Recentemente, Quandl entrevistou um gerente sênior de carteira quantitativa em um grande fundo de hedge. Nós falamos sobre como ela constrói estratégias de negociação - como ela transita de uma representação abstrata do mercado para algo concreto com poderes preditivos genuínos.


Você pode nos dizer como você cria novas estratégias de negociação?


Tudo começa com uma hipótese. Eu conjecturo que deve haver uma relação entre dois instrumentos, ou talvez haja um novo instrumento no mercado que esteja ganhando popularidade, ou talvez haja um fator macroeconômico incomum que descobri que impulsiona o comportamento de precificação de micro. Então eu escrevo uma equação - um modelo, se você quiser - que visa capturar esse relacionamento. Normalmente, haverá algum tipo de equação de processo que mostra como as variáveis ​​evoluem com o tempo, com um componente aleatório (estocástico).


O próximo passo é encontrar uma solução de formato fechado para este modelo. Às vezes isso é fácil; às vezes isso leva dias e semanas de álgebra; às vezes não há solução de forma fechada e tenho que me contentar com uma aproximação. Acho muito útil o kit de ferramentas de manipulação simbólica do Mathematica nesta etapa do processo.


Ok, agora eu tenho um modelo do mercado. Eu preciso testar se é realista. Nesta fase, geralmente me volto para o Matlab. Assumo alguns valores plausíveis para vários parâmetros e executo algumas simulações. As saídas simuladas parecem razoáveis? Eles refletem, pelo menos conceitualmente, a dinâmica real do mercado?


Assumindo que o modelo passe por essa verificação de integridade, é hora de ir além da exploração ou ideação do céu azul e da pesquisa formal.


O que você quer dizer com “pesquisa formal”? E por que isso é necessário?


Refiro-me à transição de uma representação abstrata e estilizada do mercado para algo concreto e não ambíguo, com poderes preditivos genuínos.


É difícil criar modelos realmente preditivos. Mas é muito fácil se enganar pensando que você criou um modelo preditivo, quando, na verdade, você simplesmente se encaixou demais ou usou testes na amostra ou impôs um conhecimento exógeno em suas regras, ou o que você tem. A maioria dos "sistemas" desmorona no mundo real por esse motivo preciso.


Eu não quero que isso aconteça ao meu modelo; Eu vou estar arriscando dinheiro real com isso. Assim, ao longo dos anos, construí e aprimorei uma abordagem sistemática, lenta e constante que minimiza o risco de me enganar. Isso é o que eu chamo de "pesquisa formal".


Quais etapas você inclui no seu processo formal de pesquisa?


Logo no início, meu maior medo é a contaminação de dados. A história é um recurso limitado; Depois de esgotar os dados históricos para testar, você não poderá gerar mais nenhum. Estou paranóico por não ter esgotado meu suprimento de dados fora de amostra não contaminados.


Então começo dividindo meus dados históricos em partes não sobrepostas. Eu então escolho aleatoriamente para que nem eu saiba qual pedaço é qual. (Isso protege contra preconceitos subconscientes: por exemplo, ter aversão ao risco quando eu sei que meu conjunto de dados de teste é 2008, ou que estou buscando risco em 2009).


Eu designo um pedaço como meu conjunto de calibração. Eu costumo usar o Python para calibração: eu uso suas bibliotecas de otimização internas e escrevi algumas das minhas. Neste exemplo em particular, meus parâmetros são restritos e correlacionados. Então eu uso um processo de otimização de 2 etapas chamado algoritmo EM. Os otimizadores podem ser sensíveis às condições iniciais, então eu uso o Monte Carlo para escolher um número de pontos de partida no espaço da solução. Tudo isso é muito fácil de fazer em Python.


O resultado dessa calibração deve ser um conjunto de “parâmetros do modelo” - valores numéricos - que podem ser combinados com observações reais do mercado para prever outros preços de mercado.


Depois de calibrar o modelo, testei a amostra. As previsões são estáveis ​​e os resíduos significam uma reversão? Se não, o modelo não funciona; tão simples como isso. Eu tento vários "truques" para quebrar o modelo. Por exemplo, calibre dados mensais, mas teste em dados diários. Ou eu testo parâmetros dos EUA nos dados do mercado canadense. Se o modelo reflete verdadeiramente a realidade econômica subjacente, deve ser bastante robusto para esses tipos de ataques. (Economia não muda quando você cruza fronteiras).


Então, você separa estritamente na amostra e fora da amostra; você se cega para intervalos de datas; você usa Monte Carlo para evitar vieses de ponto inicial; e você tenta vários truques de robustez. O que mais você faz para garantir que não se engane?


Eu coloco um prêmio muito alto em parcimônia. Se meu modelo requer muitos parâmetros ou tem muitos graus de liberdade, é apenas ajuste de curva; não é um modelo de todo. Então, estou constantemente tentando remover fatores. Se o modelo continuar funcionando (e permanecer "rico") com vários fatores removidos, provavelmente será um bom fator.


Uma segunda prova de robustez é se o modelo funciona bem, não importa qual estratégia de negociação você construa em cima dele. Se você só pode ganhar dinheiro usando uma regra de escala não linear complexa com todos os tipos de condições de borda, isso sugere uma falta de robustez.


Por fim, não há substituto para os dados. Penso em todos os conjuntos de dados possíveis fora da amostra em que posso testar o modelo de forma plausível: diferentes países, diferentes instrumentos, diferentes intervalos de tempo, diferentes frequências de datas. O modelo tem que trabalhar em todos eles; senão você tem viés de seleção nos resultados.


Isso parece abrangente. O que acontece depois?


Armado com um modelo calibrado, o próximo passo é construir uma simulação de PL. Resíduos de reversão média podem não ser suficientes se o conjunto de oportunidades for muito pequeno para compensar o bid-ask, ou se as explosões ocasionais matarem todos os meus lucros. Então eu preciso testar uma estratégia de negociação real usando o meu modelo. Aqui é onde eu tenho que exercitar o máximo cuidado: é muito fácil adaptar-se à curva adicionando novas variáveis ​​livres, ou distorcer os resultados com conhecimento subconsciente, ou eliminar os valores discrepantes. Simplicidade, separação rigorosa de amostras e honestidade intelectual são importantes aqui.


Eu uso o Excel para back-testing. Esta é uma escolha deliberada: o Excel não é tão poderoso quanto o Python, e isso significa que existe um limite superior em quão complexo eu posso fazer minhas regras de negociação. Isso é uma coisa boa: uma estratégia que requer complexidade para ser lucrativa provavelmente não é uma boa estratégia em primeiro lugar.


O Excel também permite que eu veja minhas suposições explicitadas; É fácil perder o controle de tais coisas quando você está trabalhando no código. Ele me permite visualizar as estatísticas de desempenho (risco, retorno, rebaixamentos, eficiência de capital, taxa de Sharpe e assim por diante) de forma rápida e clara. Mesmo que meu modelo “funcione”, não há garantia de que uma estratégia de negociação construída em torno do modelo será economicamente viável, portanto, essas estatísticas são importantes.


Muito poucos modelos de negociação superam todas as etapas acima: formulação de blue-sky e testes de sanidade; calibração histórica e desempenho fora da amostra; back-test e rentabilidade da estratégia de negociação. Mas, para os poucos que fazem isso, agora é hora de entrar em produção. Este é um jogo totalmente diferente.


Você pode ler a segunda parte da entrevista aqui. Nele, discutimos como a produção é um jogo totalmente novo e onde obter ideias para novas estratégias. Também respondemos às perguntas do leitor na terceira parte da entrevista.


Alguma pergunta para o nosso quant? Comentários? Deixe-os abaixo e ela responderá a você. Gostaríamos de saber sobre seu processo de criação de estratégias de negociação.


Deixe uma resposta Cancelar resposta.


Abordagem de uma Quant para construir estratégias de negociação: primeira parte Uma abordagem quantitativa para construir estratégias de negociação: parte dois Uma abordagem quantitativa para construir estratégias de negociação: parte três [& # 8230]


[& # 8230] Uma abordagem quantitativa para a construção de estratégias comerciais: primeira parte [Quandl] [& # 8230;]


[& # 8230;] parte de nossa entrevista com um gerente sênior de carteira quantitativa em um grande fundo de hedge. Na primeira parte, ela discutiu a fase teórica da criação de uma estratégia de negociação quantitativa. No segundo [& # 8230;]


[& # 8230;] Статья с аггрегатора Quandl Resource Hub. [& # 8230;]


Abordagem da Quant para Construir Estratégias de Negociação: Part One [Quandl] Recentemente, Quandl entrevistou um gerente sênior de carteira quantitativa em um grande fundo de hedge. Nós falamos sobre como ela constrói estratégias de negociação como ela transita de uma representação abstrata do mercado para algo concreto com poderes preditivos genuínos. Você pode nos dizer como você cria novas estratégias de negociação? Tudo começa com uma hipótese. Eu conjecturo que deveria haver um [& # 8230;]


[& # 8230] 1. Uma abordagem Quant para construir estratégias de negociação: primeira parte [& # 8230;]


Eu achei a entrevista bastante útil. No entanto, observo que você já usou o Matlab, Python e Excel (e presumivelmente usa C # / C ++ / Java) para produção. Não é este processo de mudança entre 4 idiomas complicado? Além disso, o que é em Matlab que você não pode fazer em Python ou vice-versa? Além disso, em relação ao Excel, você não acha que, embora a visualização seja útil, ela carrega muito risco operacional (as fórmulas não são arrastadas corretamente, a planilha não é atualizada corretamente, etc.)? Adoraria ouvir sobre isso.


& gt; Este processo de mudança entre 4 idiomas não é complicado?


Não é tão complicado. Eu normalmente acho que a parte mais entediante é garantir que os dados fluam de forma consistente e suave entre diferentes aplicativos ou idiomas. A tradução de sintaxe é fácil; tradução de dados, não tanto.


& gt; O que é isso no Matlab que você não pode fazer em Python ou vice-versa?


Hoje em dia, você tem razão, não há muito o que você não pode fazer em Python. E de fato me vejo usando Python cada vez mais. Mas esse nem sempre foi o caso; A multiplicidade de bibliotecas financeiras de código aberto em Python é um fenômeno relativamente recente.


& gt; Com relação ao Excel, você não acha que, embora a visualização seja útil, ela carrega muito risco operacional (as fórmulas não são arrastadas corretamente, a planilha não é atualizada corretamente, etc.)?


Eu concordo totalmente. O Excel é frágil de várias maneiras: é fácil cometer erros operacionais, é impossível auditar; não é muito produtivo; paira nos momentos mais inconvenientes. Então você tem que ter muito cuidado em como e onde você usa o Excel. Dito isso, acho que os benefícios superam os muitos custos.


Eu achei a entrevista útil. No entanto, eu vejo que você já usou o Matlab, Python e excel (e possivelmente estaria usando C ++ / C # / Java / python para produção). Este processo não é complicado? Além disso, o que é que no Matlab você não pode fazer em Python ou vice-versa? E você não acha que o Excel é um risco operacional (você geralmente arrasta e solta fórmulas que podem introduzir erros manuais, confiar na atualização das folhas corretamente, etc.)?


[& # 8230] Uma abordagem quantitativa para construir estratégias de negociação (quandl) [& # 8230]


Abordagem muito sensata. Eu gosto especialmente da importância colocada em manter seus dados OOS sacrossantos. O único aspecto com o qual tenho dúvidas é a remoção de fatores para testar a estabilidade. Talvez seja apenas o formato de entrevista tornando as coisas um pouco menos claras. Mas eu construo modelos de uma forma bottom-up não de cima para baixo. Um novo fator adiciona informações ou não. Se o meu modelo de dois fatores tem IC mais alto do que o meu modelo de três fatores, então o terceiro fator é supérfluo e não deve ser adicionado em primeiro lugar. Então, por definição, a remoção de um fator de um modelo bem especificado sempre resultará em desempenho de previsão degradado.


Minhas desculpas, lvcm, eu não estava claro o suficiente. (Veja também minha resposta para David, up-thread).


Eu não removo fatores em minha fase de testes; Eu tento removê-los na minha fase de especificação. Se novos graus de liberdade não estiverem adicionando poder explicativo, eu os esvazio. Mas uma vez que eu passei para testes e verificações de robustez, não faz sentido remover fatores. (Na verdade, eu nem sei o que isso significa "não é como se você pudesse simplesmente" ignorar "kappa ou qualquer outra coisa".


Mantendo os dados OOS sacrossantos & # 8212; totalmente com você sobre isso. Se há uma coisa que eu gostaria de poder martelar nas cabeças das pessoas, é a importância deste passo.


Eu faço modelagem quantitativa e análise para viver. Eu fiz alguns modelos interessantes em R até agora. O problema é que eu não sou nem bom em Python nem tenho horas para aprender isso, & # 8211; ser capaz de fazer tarefas confortavelmente. Existe uma maneira de colaborar com alguém que tenha a experiência e conhecimento para fazer o teste de volta, teste de PL, etc.


É claro que posso fazer estimativas de modelos em relação aos preços históricos & # 8211; no entanto, isso não é suficiente. É necessário simular como o modelo teria sido executado se estivesse realmente operando.


Você já tentou usar o Quantopian para back-testing? Seu IDE (ambiente de desenvolvedor integrado) facilita bastante, embora exija conhecimento em Python.


Também construí um ambiente de teste de retorno em Ruby (uma linguagem de programação semelhante ao Python).


De qualquer forma, eu ficaria feliz em ajudá-lo a traduzir seu modelo em algo programático.


Este é um informativo para entrevista como quant. Você poderia dar mais detalhes sobre o uso de Monte Carlo em parâmetros & # 8217; inicialização? Mais uma vez obrigado.


Estou um pouco surpreso com este artigo. Por que fazer um modelo estocástico fora do caminho que você gasta & # 8216; semanas & # 8217; resolver com álgebra auxiliada por computador, mas depois descartar a maioria dos parâmetros? Como o produto final poderia ser diferente de outras coisas?


Você me entende mal & # 8212; minhas desculpas por não ser mais claro!


Eu tento descartar os parâmetros logo no início, quando estou especificando meu modelo. Eu vi quants com modelos com 20 parâmetros de longo prazo e 12 graus diários de liberdade. Para mim, esses modelos não são, eles são articuladores universais: eles podem se encaixar em qualquer coisa. Eu nunca arriscaria dinheiro em nada tão complexo.


Então, tento ser o mais parcimonioso possível ao criar meu modelo.


Uma vez que eu tenha definido um modelo que eu acho que é economicamente razoável e logisticamente correto, só então tento minhas verificações de robustez. E neste estágio eu não descarto parâmetros. Mas eu presto atenção às sensibilidades. Se a minha lucratividade é incrivelmente sensível a um parâmetro específico que atinge um valor específico e se desfaz em pequenas perturbações, então suspeito que meu modelo seja apenas "sortudo", não inteligente. Mas eu concordo com você que remover parâmetros totalmente neste estágio seria bobo.


Estou impressionado, o que você acha sobre a regra de gerenciamento de dinheiro, como tamanho ótimo de apostas?


Esta é uma excelente entrevista e eu aprecio que você tenha tido tempo para fornecer insights sobre o design da sua estratégia. Isso seria muito demorado, mas seria possível fornecer um exemplo real usando um sistema real (independentemente de o sistema ser lucrativo ou não). Conceitualmente eu entendo o que você está dizendo, mas seria informativo para colocar exemplos reais para as etapas. Mais uma vez, obrigado pelo seu tempo.


Eu gostaria de fazer uma pergunta básica. Eu estou começando no campo da análise quantitativa. No entanto, você parece ser bastante experiente e neste campo por um longo tempo. Gostaria de perguntar se as estratégias quantitativas ou técnicas estão lhe dando consistência & # 8216; confortável & # 8217; retorna. Você confia em um sistema ou continua a modificá-lo arbitrariamente e se você usa alguma análise fundamental também para auxiliar a análise técnica.


Você tem que continuar evoluindo com os mercados. Nenhum sistema ou estratégia única funciona para sempre.


Eu gostaria de perguntar quais são as verificações e procedimentos adicionais quando um modelo é levado ao vivo, em particular como você monitora e gerencia continuamente o modelo uma vez vivo? Você configura regras de monitoramento predefinidas ou disjuntores que desativam o modelo automaticamente? Se sim, como você constrói estes, que tipos de medidas você usa neles? Também relacionado como você identifica e lida com períodos de desempenho inferior razoável? Esse desempenho insuficiente pode tornar uma dúvida os modelos e fazer parecer que um modelo parou de funcionar quando isso não acontece.


Eu sou meio antiquado & # 8212; Eu não acredito que os disjuntores realmente funcionem. Ou, para ser mais preciso, os portfólios com disjuntores programáticos têm desempenho inferior às carteiras sem, no longo prazo. O raciocínio é que os disjuntores impedem que você saia de bons negócios com muita frequência, de tal forma que essas perdas superam as raras ocasiões em que elas evitam que você tenha grandes problemas.


Nota: Eu estou falando sobre portfólios clássicos de quantificadores aqui; execução não eletrônica ou HFT. Nos últimos casos, posso ver totalmente por que você deseja vários failafes e disjuntores; esses livros podem fugir de você muito rápido. Mas essa não é minha área de especialização.


Dentro da minha área, observei alguns padrões em modelos que se quebram. Para começar, eles raramente explodem instantaneamente; em vez disso, ou a oportunidade simplesmente desaparece (arbitrada por copycats) ou o spread lentamente e imperceptivelmente se distancia cada vez mais do valor justo e nunca volta (mudança de regime).


Por outro lado, se uma negociação diverge e então a divergência acelera, isso me cheira muito mais a capitulação. Nesses casos, quero manter minha posição e, de fato, adicionar, se puder.


Portanto, a conclusão paradoxal é que quanto mais rápido um modelo perde dinheiro, mais provável é que ainda seja válido.


Boa sorte em programar um disjuntor coerente para lidar com essa lógica!


Este é realmente um microcosmo do problema maior. Uma situação em que um disjuntor realmente ajudaria, quase certamente será uma perversão suficiente para evitar a maioria das tentativas a priori de definição. São os desconhecidos desconhecidos que te pegam, todas as vezes.


Nota importante: o acima é informado pela minha própria posição e preferência de risco. Sou superior o suficiente e bem-sucedido o suficiente para que a maximização do portfólio seja meu incentivo central. Se eu fosse mais jovem, manter meu emprego (permanecer no jogo) seria meu incentivo central. E, nesse caso, os disjuntores ajudam porque evitam perdas catastróficas e perdedoras de empregos, enquanto as perdas perdidas não aparecem em nenhum relatório da PL.


& gt; Como você identifica e lida com períodos de desempenho insuficiente?


Esta é a pergunta de cem milhões de dólares! Eu gostaria de ter uma resposta definitiva e inequívoca para lhe dar "# 8212; isso me ajudaria também


Obrigado pelo feedback. Eu tomo um pequeno conforto do fato de que os profissionais também lutam com esse tipo de pergunta.


Mais uma pergunta se eu puder & # 8212; Eu brinquei com as idéias de (mas ainda não realmente testadas / simuladas / implementadas) mais & # 8220; gradual & # 8221; tipo de gestão / monitorização, e. onde você controla digamos a quantidade de capital comprometida com um modelo específico (ou cesta de modelos) e reduza gradualmente ou diminua gradualmente ao longo do tempo, dependendo do desempenho do modelo agregado.


A ideia básica seria que o processo de gestão teria uma visão de longo prazo suficiente para não levar o modelo & # 8220; out & # 8221; dos mercados de rebaixamentos razoáveis ​​/ esperados (devido à observação de uma amostra suficientemente grande de desempenho), enquanto ainda assegurando que o modelo finalmente pare de ser negociado se os retornos forem reduzidos ou negativos para um tamanho de amostra representativo.


É claro que essa idéia não seria garantia contra perdas como tal, mas a esperança seria que isso pudesse ser suficiente para pelo menos impedir um estilo de expansão do LTCM.


(Para adicionar: eu acho que parece-me que um dos erros com o blowup LTCM foi assumindo que seus modelos sempre funcionaria e, portanto, eles não tinham plano, sem nível de monitoramento, nada para dizer-lhes sistema fora do conhecido / parâmetros esperados, reduzir a escala para preservar o capital & # 8221 ;. E eu gostaria de aprender e evitar esse tipo de erro, se for possível & # 8230;)


Você mencionou "mudança de regime" & # 8221 ;. Então, como você decide que o seu comércio perdeu o suficiente para você considerar que seu modelo não funciona mais? Eu acho que um & # 8220; Post # 3: monitoramento e manutenção & # 8221; seria legal 😀 Obrigado por compartilhar!


Tudo muito sensato. Eu achei este comentário interessante:


& # 8221; Por exemplo, eu calculo em dados mensais mas testo em dados diários. & # 8221;


Eu acho que depende do que você quer dizer com "calibração & # 8217; mas isso me pareceu um pouco incomum.


Vamos simplificar e suponha que eu esteja tentando capturar tendências (lentas) usando um crossover de média móvel. Eu brinco com dados mensais até conseguir algo que acho que funciona. Para mover para dados diários eu deveria multiplicar alguns parâmetros por.


20 (como os comprimentos médios móveis) porque há cerca de 20 dias úteis em um mês e outros por.


sqrt (20) [vários parâmetros de escala muito chatos para discutir aqui]. Mas o modelo ainda deve se comportar da mesma maneira. O volume de negócios, por exemplo, não deve aumentar quando eu passo para o diário.


Por outro lado, se eu mantiver os parâmetros iguais, em vez de pegar uma tendência de 6 meses, eu estou pegando uma tendência de 6 dias úteis. Mas o ponto ideal para a tendência seguindo a maioria dos ativos tende a ser um pouco mais lento do que isso, então é improvável que pareça tão bom. Também o meu volume de negócios será muito maior, mas então você esperaria isso. Para colocar de outra forma, eu não tenho certeza de que todos os aspectos do comportamento do mercado são "fractal". de tal modo que posso aplicar exatamente o mesmo modelo a diferentes escalas de tempo.


Oi Rob Poster original aqui. Obrigado por um comentário mais perspicaz!


Os mercados são fractais? Grande pergunta e uma que passei muitas noites debatendo sobre scotch.


Pessoalmente, acho que não, porque certos eventos exógenos atuam como uma função forçadora: chamadas de margem diárias de trocas, MTMs mensais para fundos de hedge, demonstrações financeiras trimestrais para bancos de capital aberto. Esses eventos causam * algo * para acontecer (não importa o que) nessas freqüências. Assim, nem todas as escalas de tempo são criadas iguais, e apenas acelerar / desacelerar o relógio não é * uma abordagem “neutra”.


Então, eu realmente sou muito cauteloso sobre quais estratégias eu faria com esse tipo de mudança de tempo.


Aqui está uma estratégia de brinquedo onde o deslocamento do tempo pode funcionar. Pegue 2 tiras de futuros no mesmo “espaço” - talvez trigo de inverno e primavera. Procure casos em que 1 é retrocedido e o outro em contango. Compre frente baixa, venda de volta alta, venda frente alta, compre de volta baixa. Uma estratégia totalmente simples, quase “burra”, mas para muitos pares de futuros costumava funcionar bem.


Este é um ótimo caso para mudar escalas de tempo. Essa estratégia deve funcionar se você amostrar / reequilibrar semanalmente, mensalmente ou trimestralmente - porque as variáveis ​​de decisão são estado puro, sem caminho. Não estamos olhando para históricos de preços; nem estamos olhando para instrumentos com um componente de tempo (títulos que se acumulam, ou opções que decaem ou aleatoriamente caminham com um desvio). Então, dado que a estratégia é realmente limpa, podemos nos safar desse tipo de teste de robustez.


(Advertência: o lance-pedido é o fator complicador aqui - sua escala de tempo escolhida precisa ser grande o suficiente para permitir uma ação de preço que supere o atrito. O lance-pedido é a ruína de quantos em todos os lugares.)


Mas eu nunca aplicaria esse mesmo teste para dizer uma estratégia de acompanhamento de tendências. Isso levantaria todo tipo de questões filosóficas. O que significa para uma estratégia ter um “ponto ideal” em, digamos, 9 dias, ou 200 dias, ou sempre? Ao otimizar para esse ponto ideal, você está ajustando a curva? Ou o fato de que quase todo mundo usa 9d e 200d cria uma profecia auto-realizável, e então esses números representam algo estrutural sobre o mercado? Eu já ouvi argumentos convincentes nos dois sentidos. E se você amostrasse seus dados no intervalo X e, em seguida, fizesse médias móveis de 9X e 200X & # 8212; Isso funcionaria? Diversas questões filosóficas; Eu não tenho certeza das respostas.


Outras notas: Concordo que “calibração” foi uma escolha desleixada da palavra por mim nessa frase em particular. "Ideação" teria sido melhor. Se você está calibrando, já está introduzindo mais estrutura do que a mudança de horário pode manipular com segurança.


Você está absolutamente correto re (t) e sqrt (t) - e eu concordo com você, muito chato para discutir aqui.


Mais uma vez obrigado pelo comentário!


Eu acho que "calibrar em dados mensais, mas teste em dados diários" # 8221; significa recalibrar um modelo de rolamento (como, por exemplo, uma regressão contínua) todos os meses, mas usando dados diários. Em seguida, teste com esse modelo recalibrado no mês seguinte, novamente usando dados diários.


Meio como um método de teste para a frente?


Desculpe por não ser claro. O que eu quis dizer foi mais próximo da interpretação original de Rob: Eu construo uma ideia com dados amostrados na frequência X, mas depois a testo com dados amostrados na frequência Y. A recalibração de walk-forward ou mensal é um exercício separado, que eu empreender após o modelo ter sido "em produção" # 8221; por algum tempo.


Aves tardias obtêm o worm: dados de pagamento e força da empresa.


Em um recente artigo do Huffington Post, Nathaniel Sillin, diretor de educação financeira global da Visa, escreveu: “Entender quanto custa administrar uma casa e a importância de pagar suas contas em dia pode ajudá-lo a evitar erros dispendiosos”. De acordo, o sábio conselho de Sillin não é tão universal quanto você imagina. Pelo menos não no mundo dos negócios. A Bloomberg citou um relatório do parceiro de Quandl, Dun & amp; Bradstreet (essencialmente a Experian e Equifax do mundo dos negócios), alegando que “para grandes empresas,. . . as coisas são diferentes. Por um lado, eles.


O panorama dos dados do setor automotivo.


Desde que o homem inventou a roda pela primeira vez, nossa necessidade de otimizar a forma como nos movemos tem sido uma obsessão quase primitiva. Desde o advento do primeiro veículo motorizado até carros autônomos, a indústria automobilística evoluiu rapidamente em sua adoção da tecnologia. Estamos agora experimentando o que é provavelmente o maior avanço no setor automotivo desde que Henry Ford projetou pela primeira vez sua linha de montagem móvel: a ascensão do carro conectado. Estimativas de inteligência de BI do Scotiabank, até 2020, mais de 75% dos novos carros embarcados serão conectados à Internet. Desde a leitura das notificações do Facebook até a medição da segurança e da integridade do motor.


Icebergs, camaleões e víboras: uma pesquisa de execução de FX.


O mercado de câmbio há muito tem sido o mais descentralizado e opaco de todos os mercados. Como resultado, os operadores de FX trabalham sob grandes desvantagens informacionais em comparação com seus pares em outras classes de ativos. Diferentemente dos mercados acionários, nos quais as regulamentações da SEC determinam que as bolsas públicas informem os preços das transações e os volumes de negociação diários, o FX não possui tais fontes de dados unificadas. Não há trocas centrais, buracos ou quadros de avisos. Em vez disso, as transações de câmbio ocorrem por meio de um milhão de telefonemas, visitas de clientes, segmentos de e-mail e plataformas de negociação. Todo o mercado é over-the-counter, festa a festa, e ninguém sabe o que alguém está fazendo além.


Estratégias de Negociação Algorítmica, Paradigmas e Idéias de Modelagem.


"As aparências enganam", disse uma pessoa sábia. A frase vale para as estratégias de negociação algorítmica. O termo estratégias de negociação algorítmica pode soar muito chique ou muito complicado. No entanto, o conceito é muito simples de entender, uma vez que o básico é claro. Neste artigo, vou falar sobre estratégias de negociação algorítmica com alguns exemplos interessantes.


Se você olhar de fora, um algoritmo é apenas um conjunto de instruções ou regras. Esse conjunto de regras é usado em uma bolsa de valores para automatizar a execução de ordens sem intervenção humana. Este conceito é chamado Algorithmic Trading.


Deixe-me começar com uma estratégia de negociação muito simples. Aqueles que já estão negociando saberão sobre S. M.A e para aqueles que não o fazem; S. M.A é média móvel simples. O S. M.A pode ser calculado usando qualquer número predefinido e fixo de dias. Uma estratégia de negociação algorítmica baseada em S. M.A pode ser simplificada nestes quatro passos simples:


Calcular 5 dias SMA Calcular 20 dias SMA Tomar uma posição longa quando o SMA de 5 dias for maior ou igual a 20 dias SMA Tomar uma posição curta quando o SMA de 5 dias for menor que SMA de 20 dias.


Referimo-nos a esta estratégia de negociação algorítmica como Moving Average Crossover Strategy. Este foi apenas um exemplo simples. Agora, não pense que tudo vai ser uma cama de rosas. Mesmo que fosse, então esteja preparado para os espinhos. Na negociação cotidiana, algoritmos de negociação muito mais complexos são usados ​​para gerar estratégias de negociação algorítmica.


Todas as estratégias de negociação algorítmica que estão sendo usadas hoje podem ser classificadas amplamente nas seguintes categorias:


Momento / Tendência Após Arbitragem Tomada de Mercado de Arbitragem Estatística.


Deixe-me entrar em alguns detalhes.


Estratégias baseadas no momento.


Supondo que haja uma tendência específica no mercado. Como um comerciante de algo, você está seguindo essa tendência. Além de nossa suposição, os mercados caem dentro da semana. Agora, você pode usar estatísticas para determinar se essa tendência continuará. Ou se vai mudar nas próximas semanas. Assim, você fará o seu próximo passo. Você baseou sua estratégia de negociação algorítmica nas tendências de mercado que você determinou usando estatísticas.


Este método de seguir as tendências é chamado de estratégia baseada em dinâmica.


Existem inúmeras maneiras de implementar essa estratégia de negociação algorítmica e discuti isso em detalhes em um de nossos artigos anteriores, chamado “Metodologia de Quantificação de Notícias para o Comércio Automático”.


Se assumirmos que um pharma-corp deve ser comprado por outra empresa, então o preço das ações de nosso corp pode subir. Isso é acionado pela aquisição, que é um evento corporativo. Se você está planejando investir com base nas ineficiências de preços que podem acontecer durante um evento corporativo (antes ou depois), então você está usando uma estratégia orientada a eventos. Falência, aquisição, fusão, spin-offs, etc. podem ser o evento que conduz esse tipo de estratégia de investimento.


Essas estratégias podem ser neutras em termos de mercado e usadas amplamente por corretores de hedge funds e proprietários.


Arbitragem Estatística.


Quando surge uma oportunidade de arbitragem por causa de citação incorreta nos preços, pode ser muito vantajoso para a estratégia de negociação de algo. Embora tais oportunidades existam por um período muito curto, os preços no mercado são ajustados rapidamente. E é por isso que esse é o melhor uso de estratégias de negociação algorítmica, já que uma máquina automatizada pode acompanhar essas alterações instantaneamente.


Por exemplo, se o preço da Apple cair para menos de US $ 1, a Microsoft cairá US $ 0,5, mas a Microsoft não caiu, então você vai vender a Microsoft para obter lucro. Você pode ler sobre os equívocos comuns que as pessoas têm sobre Arbitragem Estatística aqui.


Fabricação de mercado.


Para entender o mercado, deixe-me falar primeiro sobre os criadores de mercado.


Segundo a Wikipedia:


Um criador de mercado ou provedor de liquidez é uma empresa, ou um indivíduo, que cita tanto um preço de compra quanto um preço de venda em um instrumento financeiro ou mercadoria mantida em estoque, esperando lucrar com o spread de oferta ou oferta.


A criação de mercado fornece liquidez a títulos que não são frequentemente negociados na bolsa de valores. O formador de mercado pode melhorar a equação demanda-oferta de títulos. Deixe-me lhe dar um exemplo:


Vamos supor que você tenha Martin, um criador de mercado, que compra por Rs. 500 do mercado e vendê-lo em 505. Ele lhe dará uma cotação bid-ask de Rs. 505-500. O lucro de Rs. 5 não pode ser vendido ou trocado por dinheiro sem perda substancial de valor. Quando Martin assume um risco maior, o lucro também é maior.


Eu achei o livro de Michael Lewis "Flash Boys" no Indian Bull Market bastante interessante e ele fala sobre liquidez, criação de mercado e HFT em grande detalhe. Confira depois de terminar de ler este artigo.


Desde que você precisará ser analítico & amp; Embora seja quantitativo ao entrar ou atualizar para a negociação algorítmica, é imperativo aprender programação (alguns, se não todos) e construir sistemas infalíveis e executar a estratégia de negociação algorítmica correta. Lendo este artigo sobre negociação automatizada com Interactive Brokers usando Python será muito benéfico para você. Você pode ler o artigo aqui.


Paradigmas & amp; Idéias de Modelagem.


Agora que eu apresentei estratégias de negociação algorítmica, estarei lançando alguma luz sobre os paradigmas de estratégia e as idéias de modelagem pertencentes a cada estratégia.


Tomada De Mercado Estatística Arbitragem Momentum Machine Learning Based.


Fabricação de mercado.


Como mencionei anteriormente, o objetivo primordial da criação de mercado é infundir liquidez em títulos que não são negociados em bolsas de valores. Para medir a liquidez, levamos em consideração o spread de compra e venda e os volumes de negociação.


Os algoritmos de negociação tendem a lucrar com o spread bid-ask. Vou me referir ao nosso amigo, Martin, novamente nesta seção. Martin sendo um criador de mercado é um provedor de liquidez que pode cotar tanto no lado de compra quanto de venda em um instrumento financeiro que espera lucrar com o spread de oferta de oferta. Martin aceitará o risco de manter os títulos para os quais citou o preço e, uma vez recebido o pedido, muitas vezes ele venderá imediatamente de seu próprio inventário. Ele pode procurar uma oferta de compensação em segundos e vice-versa.


Quando se trata de títulos ilíquidos, os spreads são geralmente mais altos e os lucros também. Martin assumirá um risco maior nesse caso. Vários segmentos do mercado não têm interesse dos investidores devido à falta de liquidez, já que não conseguem sair de várias ações de pequena e média capitalização em um dado momento.


Fabricantes de mercado como Martin são úteis, pois estão sempre prontos para comprar e vender ao preço cotado por eles. De fato, grande parte da negociação de alta frequência (HFT) é uma atividade de mercado passiva. As estratégias estão presentes nos dois lados do mercado (muitas vezes simultaneamente) competindo entre si para fornecer liquidez àqueles que precisam.


Então, quando essa estratégia é mais lucrativa?


Essa estratégia é lucrativa desde que o modelo preveja com precisão as variações futuras de preço.


Modelando idéias baseadas neste paradigma.


O spread bid-ask e o volume de transações podem ser modelados em conjunto para obter a curva de custo de liquidez, que é a taxa paga pelo tomador de liquidez. Se o tomador de liquidez só executar ordens com o melhor lance e pedir, a taxa será igual ao lance pedir spread vezes o volume. Quando os negociadores vão além do melhor lance e pedem mais volume, a taxa também se torna uma função do volume.


O volume de negociação é difícil de modelar, pois depende da estratégia de execução dos tomadores de liquidez. O objetivo deve ser encontrar um modelo para volumes de comércio que seja consistente com a dinâmica de preços. Modelos de criação de mercado são geralmente baseados em um dos dois:


O primeiro se concentra no risco de estoque. O modelo é baseado na posição de estoque preferencial e nos preços com base no apetite de risco. O segundo é baseado na seleção adversa que distingue entre negociações informadas e de ruído. Negociações de ruído não possuem qualquer visão sobre o mercado, enquanto que as transações informadas fazem. Quando a visão do tomador de liquidez é de curto prazo, seu objetivo é obter lucro a curto prazo utilizando a margem estatística. No caso de visão de longo prazo, o objetivo é minimizar o custo da transação. As estratégias de longo prazo e as restrições de liquidez podem ser modeladas como ruído em torno das estratégias de execução de curto prazo.


Para saber mais sobre o Market Makers, você pode conferir este interessante artigo no blog da QuantInsti.


Arbitragem Estatística.


Se a criação de mercado for a estratégia que faz uso do spread de compra e venda, a Arbitragem Estatística busca lucrar com a precificação estatística de um ou mais ativos com base no valor esperado desses ativos.


Uma maneira mais acadêmica de explicar a arbitragem estatística é espalhar o risco entre mil a milhões de negociações em um período de detenção muito curto, esperando lucrar com a lei dos grandes números. Algoritmos de Arbitragem Estatística são baseados na hipótese de reversão da média, principalmente como um par.


O comércio de pares é uma das várias estratégias coletivamente referidas como Estratégias de Arbitragem Estatística. Em pares estratégia comercial, as ações que exibem co-movimento histórico nos preços são emparelhadas usando semelhanças fundamentais ou baseadas no mercado. A estratégia baseia-se na noção de que os preços relativos em um mercado estão em equilíbrio e que os desvios desse equilíbrio serão eventualmente corrigidos.


Quando um estoque supera o outro, o outperformer é vendido a descoberto e o outro é comprado com a expectativa de que o desvio de curto prazo termine em convergência. Isto frequentemente protege o risco de mercado de movimentos adversos do mercado, isto é, torna a estratégia beta neutra. No entanto, o risco total de mercado de uma posição depende do montante de capital investido em cada ação e da sensibilidade das ações a esse risco.


A Momentum Strategies busca lucrar com a continuidade da tendência existente, aproveitando as oscilações do mercado.


“Em palavras simples, compre alto e venda mais alto e vice-versa.”


E como conseguimos isso?


Nesta estratégia de negociação de algoritmos em particular, teremos posições de curto prazo em ações que estão subindo ou descendo até que apresentem sinais de reversão. É contra-intuitivo para quase todas as outras estratégias bem conhecidas. O investimento em valor é geralmente baseado em reversão de longo prazo para significar, enquanto o investimento em momentum é baseado na lacuna no tempo antes da reversão da média ocorrer.


O momentum está perseguindo o desempenho, mas de uma maneira sistemática, tirando vantagem de outros caçadores de desempenho que estão tomando decisões emocionais. Normalmente, há duas explicações dadas para qualquer estratégia que tenha funcionado historicamente, ou a estratégia é compensada pelo risco extra que ela assume ou por fatores comportamentais, devido a qual prêmio existe.


Há uma longa lista de preconceitos comportamentais e erros emocionais que os investidores exibem devido a que o momento funciona. No entanto, é mais fácil falar do que fazer, pois as tendências não duram para sempre e podem apresentar reversões rápidas quando atingem o pico e chegam ao fim. O momento de negociação carrega um grau mais alto de volatilidade do que a maioria das outras estratégias e tenta capitalizar a volatilidade do mercado. É importante ter tempo para comprar e vender corretamente para evitar perdas, usando técnicas adequadas de gerenciamento de risco e interrompendo as perdas. O investimento em momento requer monitoramento adequado e diversificação apropriada para salvaguardar contra esses acidentes graves.


Em primeiro lugar, você deve saber como detectar o momentum do preço ou as tendências. Como você já está negociando, sabe que as tendências podem ser detectadas seguindo ações e ETFs que estão continuamente subindo por dias, semanas ou até vários meses seguidos. Por exemplo, identifique as ações negociadas dentro de 10% de suas 52 semanas de alta ou olhe para a variação do preço percentual nas últimas 12 ou 24 semanas. Da mesma forma para detectar uma tendência mais curta, inclua uma mudança de preço a curto prazo.


Se você se lembra, em 2008, o setor de petróleo e energia foi continuamente classificado como um dos principais setores, mesmo quando estava em colapso. Também podemos analisar os ganhos para entender os movimentos nos preços das ações. Estratégias baseadas em retornos passados ​​(“estratégias de momentum de preço”) ou em surpresa de ganhos (conhecidas como “estratégias de momentum de ganhos”) exploram a reação do mercado a diferentes informações. Uma estratégia de ganho de lucros pode lucrar com a reação negativa a informações relacionadas a ganhos de curto prazo. Da mesma forma, uma estratégia de momentum de preço pode lucrar com a resposta lenta do mercado a um conjunto mais amplo de informações, incluindo a lucratividade de longo prazo.


Aprendizado de Máquina baseado.


Na negociação baseada em Aprendizado de Máquina, os algoritmos são usados ​​para prever o intervalo para movimentos de preço de curtíssimo prazo em um determinado intervalo de confiança. A vantagem de usar a Inteligência Artificial (IA) é que os humanos desenvolvem o software inicial e a própria IA desenvolve o modelo e o aprimora com o tempo. Um grande número de fundos depende de modelos computacionais construídos por cientistas de dados e quants, mas eles geralmente são estáticos, ou seja, não mudam com o mercado. Modelos baseados em ML, por outro lado, podem analisar grandes quantidades de dados em alta velocidade e melhorar-se através de tais análises.


Uma forma de inclinação da máquina chamada “redes Bayesianas” pode ser usada para prever tendências de mercado enquanto utiliza algumas máquinas. Uma IA que inclua técnicas como a computação evolucionária (que é inspirada pela genética) e o aprendizado profundo pode ser executada em centenas ou mesmo milhares de máquinas. Ele pode criar uma coleção grande e aleatória de operadores de ações digitais e testar seu desempenho em dados históricos. Em seguida, ele escolhe os melhores artistas e usa seu estilo / padrões para criar um novo tipo de trader evoluído. Este processo é repetido várias vezes e é criado um comerciante digital que pode funcionar totalmente por conta própria.


Este processo é repetido várias vezes e é criado um comerciante digital que pode funcionar totalmente por conta própria.


Estes foram alguns importantes paradigmas de estratégia e idéias de modelagem. Em seguida, vamos passar pelo procedimento passo a passo para construir uma estratégia de negociação.


Você pode aprender esses paradigmas em grande detalhe no Executive Program da QuantInsti em Algorithmic Trading (EPAT), um dos mais extensivos cursos de negociação algorítmica disponíveis on-line com gravações de palestras e acesso e suporte vitalícios.


Construindo uma estratégia de negociação algorítmica.


De estratégias de negociação de algoritmos a paradigmas e idéias de modelagem, chego a essa seção do artigo onde vou dizer como criar uma estratégia de negociação algorítmica básica.


Como você começa com a implementação de estratégias de negociação de algo?


Essa é a primeira pergunta que deve ter vindo à sua mente, eu presumo. A questão é que você já começou conhecendo os fundamentos e os paradigmas das estratégias de negociação algorítmica ao ler este artigo. Agora, que o nosso vagão tem o motor ligado, é hora de pressionar o acelerador.


E como exatamente isso é feito?


Vou explicar como uma estratégia de negociação algorítmica é construída, passo a passo. A descrição concisa lhe dará uma idéia sobre todo o processo.


O primeiro passo é decidir o paradigma da estratégia. Pode ser Market Making, Arbitrage based, Alpha, Hedging ou Execution based strategy. Para este exemplo em particular, escolherei negociação em pares, que é uma estratégia de arbitragem estatística que é neutra em termos de mercado (beta neutro) e gera alfa, ou seja, gera dinheiro independentemente do movimento do mercado.


Você pode decidir sobre os títulos reais que deseja negociar com base na visão de mercado ou através de correlação visual (no caso de estratégia de negociação de pares). Estabelecer se a estratégia é estatisticamente significativa para os títulos selecionados. Por exemplo, no caso de troca de pares, verifique a cointegração dos pares selecionados.


Agora, codifique a lógica com base na qual você deseja gerar sinais de compra / venda na sua estratégia. Para a troca de pares, verifique a “reversão à média”; calcule o escore z para o spread do par e gere os sinais de compra / venda quando você espera que ele reverta para o significado. Decida sobre as condições de “Stop Loss” e “Profit Taking”.


Stop Loss & # 8211; Uma ordem de stop-loss limita a perda de um investidor em uma posição em um título. Ele dispara uma ordem para eliminar a posição longa ou curta existente para evitar mais perdas e ajuda a tirar a emoção das decisões de negociação. Take Profit & # 8211; ordens take-profit são usadas para fechar automaticamente as posições existentes, a fim de garantir lucros quando há um movimento em uma direção favorável. Citando ou batendo estratégia.


É muito importante decidir se a estratégia será “citando” ou “batendo”. A estratégia de execução, em grande medida, decide o quão agressiva ou passiva sua estratégia será.


Citando & # 8211; Na negociação em pares, você cita uma garantia e, dependendo se essa posição é preenchida ou não, você envia a ordem para a outra. Nesse caso, a probabilidade de obter um preenchimento é menor, mas você salva bid-ask em um lado. Batendo - Neste caso, você envia ordens de mercado simultâneas para ambos os títulos. A probabilidade de obter um preenchimento é maior, mas, ao mesmo tempo, a derrapagem é maior e você paga bid-ask em ambos os lados.


A escolha entre a probabilidade de preenchimento e execução otimizada em termos de derrapagem e executivo cronometrado é o que é isso se eu tiver que colocar dessa maneira. Se você optar por citar, então você precisa decidir para o que está citando, é assim que funciona o par de operações. Se você decidir fazer uma cotação para o título menos líquido, o escorregamento será menor, mas os volumes de negociação cairão em títulos líquidos, por outro lado, aumentarão o risco de derrapagem, mas os volumes de negociação serão altos.


O uso de estatísticas para verificar a causalidade é outra maneira de chegar a uma decisão, ou seja, alterar a segurança que causa a mudança na outra e que leva a outra. O teste de causalidade determinará o par de "lead-lag"; citar para o líder e cobrir a segurança de atraso.


Como você decide se a estratégia escolhida foi boa ou ruim?


Como você julga sua hipótese?


É aí que o back-testing da estratégia surge como uma ferramenta essencial para a estimativa do desempenho da hipótese projetada com base em dados históricos. Uma estratégia pode ser considerada boa se os resultados do backtest e as estatísticas de desempenho apoiarem a hipótese.


Por isso, é importante escolher dados históricos com um número suficiente de pontos de dados. Isso é para criar um número suficiente de negociações de amostra (pelo menos 100 negociações) cobrindo vários cenários de mercado (alta, baixa, etc.). Certifique-se de fazer provisão para custos de corretagem e derrapagem também. Isso vai te dar resultados mais realistas, mas você ainda pode ter que fazer algumas aproximações durante o backtesting. Por exemplo, enquanto backtesting citando estratégias é difícil descobrir quando você obtém um preenchimento. Assim, a prática comum é assumir que as posições são preenchidas com o último preço negociado.


Para que tipo de ferramentas você deve ir, enquanto faz o backtesting?


Desde backtesting para estratégias de negociação algorítmica envolve uma enorme quantidade de dados, especialmente se você for usar dados tick by tick. Então, você deve ir para ferramentas que podem lidar com essa enorme quantidade de dados.


R ou MATLAB?


R é excelente para lidar com grandes quantidades de dados e também possui um alto poder de computação. Assim, tornando-se uma das melhores ferramentas para backtesting. Além disso, R é open source e livre de custos. Também podemos usar o MATLAB, mas ele vem com um custo de licenciamento.


Tudo bem, eu acabei de tirar a famosa citação de Ben Parker do filme Homem-Aranha (não do Incrível). Mas confie em mim, é 100% verdade. Não importa o quão confiante você pareça com a sua estratégia ou quão bem sucedido ela possa ser, você deve ir e avaliar cada um e tudo em detalhes. Existem vários parâmetros que você precisa monitorar ao analisar o desempenho e o risco de uma estratégia. Algumas métricas / proporções importantes são mencionadas abaixo:


Retorno Total (CAGR) - Taxa de Crescimento Anual Composta (CAGR). É a taxa de crescimento média anual de um investimento durante um período de tempo especificado superior a um ano. Taxa de acerto - ordem de negociação. Lucro Médio por Lucro Total do Comércio dividido pelo número total de negócios Perda Média por Comércio - Perda Total dividida pelo número total de negócios Retirada Máxima & # 8211; Perda máxima em qualquer negociação Volatilidade de devoluções - Desvio padrão dos “retornos” Sharpe Ratio - Retornos ajustados pelo risco, ou seja, retornos excedentes (sobre a taxa livre de risco) por unidade de volatilidade ou risco total.


Todo o processo de estratégias de negociação algorítmica não termina aqui. O que eu forneci neste artigo é apenas o pé de um Everest sem fim. Para conquistar isso, você deve estar equipado com o conhecimento correto e orientado pelo guia certo. É aí que entra o QuantInsti, para guiá-lo nessa jornada. QuantInsti irá ajudá-lo a conquistar o Everest no final. Se você quiser saber mais sobre estratégias de negociação algorítmica, clique aqui.

Comments

Popular posts from this blog

Cobertura segura de forex

A importância da negociação forex

Estratégia de opções de decaimento de teta